

Title CMC UV-C technical validation ICU1 **Version** 1.0

CMC UV-C technical validation ICU1

OMNIA UV-C robot

Product version 1.0

Review & Approval

Name	Role	Function	Date (YYYY-MM-DD)	Signature
T. de Jager	Author	Mechatronics Engineer	2024-03-15	
S. Palande	Reviewer	Robotics Software Engineer	2024-03-15	

1 Scope

Product OMNIA UV-C robot v1.0 Document number TR002 Title CMC UV-C technical validation ICU1 Version 1.0

The purpose of this test report is to be able to communicate the following metrics, as part of a proof of concept (POC), to Clemanceau Medical Center (CMC) in Dubai, UAE:

- Identify high-touch surfaces in the hospital intensive care unit (ICU).
- Obtain the fluence (mJ/cm²) achieved by the Omnia UV-C disinfection robot in a variety of hightouch locations.
- Correlate the achieved fluence to log reduction for selected bacteria/viruses.
- Validate the disinfection algorithm of the Omnia robot by verifying that the desired fluence (set before disinfection in the user interface (UI)), is achieved.
- Determine if the ATP test is a suitable measure for expected disinfection severity as a result of UV-C light.
- Determine if the Omnia robot is compatible with the facilities present at CMC.
- Determine if the Omnia robot adheres to and provides additional benefit to the standards, guidelines and protocols implemented by CMC.

In addition, the following items are showcased to CMC in the process:

- Understanding the use-case and limitations of the Omnia UV-C disinfection robot.
- Usage of the Omnia UV-C disinfection robot in a variety of test environments.
- Creating safety related awareness amongst personnel of CMC by means of demonstrations, training sessions and competency tests.
- Interpreting disinfection results.

The timeline to perform this proof of concept is in week 10 of 2024. The technical UV-C disinfection validation was performed on the 6th of March.

2 Method

This section describes the method which was followed for the proof of concept study. The Omnia robot used for the proof of concept is type OM-NIA.UVC.GEN1.BSE1.21.01 with hardware version version 1.00 beta 1 and software version 1.00 beta 4. The robot in the room to be disinfected is shown in Figure 1. The room is part of Clemenceau Medical Center Hospital located in Dubai.

A schematic overview of the 2D layout of the room (ICU1) is shown in Figure 2. The room consists, among other things, of a hospital bed, windows and curtains, moving cabinets, a chair, sink and cabinets (for simplicity but wrongly referred to as the kitchen), blood

Document name

Figure 1: Omnia UV-C disinfection robot in room ICU1.

cuff device, dialysis machine, respirator and a sliding door. There are a variety of overhanging devices. Also low objects such as movable stands are present.

Figure 2: ICU1 room schematic layout (not to scale).

The high-touch areas in the isolation control unit 1 (ICU1) were identified by hospital personnel, in particular the infection control officer. A variety of these locations were chosen to measure the total UV-C fluence as a result of the Omnia robot, in mJ/cm^2 . The test locations were given a unique number and are listed in Table 1 with a short description of what the location entails. Also, the locations are classified according to the type of UV-C dosimeter used, the spatial orientation of the dosimeter and whether or not the dosimeter was exposed or in shadow areas. There are a total of 14 test locations throughout the room, of which 11 have a vertical orientation, 2 horizontal and one in between the two former. The classification for exposure of the dosimeters is from best to worst as follows: direct exposure, partial exposure, partial shadow and full shadow. A direct exposure location is almost always in direct line of sight with the robot throughout the disinfection. Partial exposure for more than half the time.

Page

2 of 12

All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any information contained therein, for purposes other than provided for by this document, is not permitted, except with the prior and express written permission of Ryberg B.V.

Partial shadow less than half the time. Full shadow is not in line of sight during the majority of the disinfection. There are 5 direct exposure locations, 4 partial exposure locations, 4 partial shadow locations and one full shadow location chosen.

The original UV-C sticker dosimeters without received UV-C exposure, which are to be used as a reference, are shown in Figure 3.

Figure 3: Reference cards UV-C dosimeters.

The Hygiena SystemSure Plus ATP luminometer (shown in Figure 4) is used for adenosine triphosphate (ATP) measurements. Normal 'acceptable' ATP val-

Figure 4: Hygiena SystemSure Plus ATP luminometer used for ATP measurement.

ues are between 10 and 30 relative light units (RLU). More than 30 RLU is not acceptable to CMC hospital. In principle the ATP measurement is always kept lower than 30 RLU if the protocols are followed in CMC. Now that the setting and layout of the room and test locations are explained, the following steps will have to be followed in chronological order to conduct the proof of concept:

- 1. The UV-C stickers and UV-C dosimeters are to be placed in the designated areas in the correct orientation. The unique ID's will be noted on the stickers too. Quick Check stickers¹ are placed in shadow locations, since the expected exposure is less than in direct exposure areas, where the UV-C Dots stickers² are placed. Also the digital UV-C dosimeters are placed and reset to 0.
- 2. An ATP test will be performed for the specified locations, shown in Table 1. Results will be noted down immediately.
- 3. The room to be disinfected will be mapped.
- 4. A disinfection with setting 'C.Diff 2-log' will be performed, taking into account the prescribed safety precautions. Warming up time of the lamps is taken as 30 seconds.
- 5. After disinfection, the report is saved for later review.
- 6. First, only the infection control officer will enter the room to take ATP measurements and surface culture swabs.
- 7. Then, each UV-C dosimeter is taken a picture of, with the color scale in frame.
- 8. The stickers are left in place, after which another disinfection is started with the same settings.
- 9. After the 2nd disinfection is completed, the former 3 points are repeated.
- 10. The color change in the UV-C dosimeters are interpreted by a minimum of two non color blind people.

For interpretation of the results, Table 2 is used. This table shows for the relevant types of microorganisms the required amount of fluence in mJ/cm^2 according to literature.

Equation 1 can be used to calculate the log reduction value from the amount of fluence a dosimeter received. This equation should be used in conjunction with Table 2, as the results are interpolated on a logarithmic scale. The equation is derived from the more standard linear interpolation.

$$y(x) = 10^{\left(\frac{\log_{10}\left(\frac{x}{x_1}\right) \cdot \log_{10}\left(\frac{y_2}{y_1}\right)}{\log_{10}\left(\frac{x_2}{x_1}\right)} + \log_{10}(y_1)\right)}, \quad (1)$$

where:

• $y = \log reduction value$

Document name

TR002 1.0 CMC UV-C technical validation ICU1

All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any information contained therein, for purposes other than provided for by this document, is not permitted, except with the prior and express written permission of Ryberg B.V.

Page 3 of 12

¹https://uvcdosimeters.com/uvc-254-quick-check/ ²https://uvcdosimeters.com/uvc-254-dots/ ³https://doi.org/10.6028/jres.126.021

Ryberg

Table 1: Fluence per UV-C sticker dosimeter after one- and two disinfections.

ID	Туре	Orientation	Test location description	Classification
T1S1	UV-C sticker & ATP & surface culture	Vertical	Sink crane/faucet	Direct exposure
T1S2	UV-C sticker & ATP & surface culture	Horizontal	Bed center	Partial exposure
T1S3	UV-C sticker & ATP & surface culture	Vertical	Bed handle inside	Partial exposure
T1S4	UV-C sticker	Vertical	Under the bed knob	Partial shadow
T1S5	UV-C sticker & surface culture	Vertical	Dialysis machine	Partial shadow
T1S6	UV-C sticker & ATP & surface culture	Horizontal	Blood pressure cuff	Partial shadow
T1S7	UV-C sticker	Vertical	Clauset inside handle	Partial exposure
T1S8	UV-C sticker	Vertical	Behind curtains	Full shadow
T1S9	UV-C sticker	45 degrees	Respirator	Partial shadow
T1S10	UV-C sticker	Vertical	Curtains	Direct exposure
T1S11	UV-C sticker	Vertical	Corner of wall near ceiling	Direct exposure
T1S12	UV-C sticker	Vertical	Stand / moving cabinet	Partial exposure
T1D1	UV-C digital dosimeter	Vertical	Stand / moving cabinet	Direct exposure
T1D2	UV-C digital dosimeter	Vertical	Table top near the bed	Direct exposure

Table 2: Required fluence per log reduction for common relevant micro-organisms found³.

Micro-organism			Disinfection severity (mJ/cm^2)				
Name	Type	Host	Log 1	$\log 2$	Log 3	Log 4	Log 5
Murine norovirus CW3	Virus	RAW 264.7 macrophags ATCC TIB-71 OR: E. coli C	10	15	22	27	30
Sars-cov-2 (2019)	Virus	VeroE6 cells	0.8	1.6	2.5	3.3	28
Clostridioides difficile (C.Diff)	Bacterium	VeroE6 cells	11	23			
Staphylococcus aureus	Bacterium		4.4	5.8	6.4	7.3	9
Methicillin-resistant Staphylococcus aureus (MRSA)	Bacterium		1.2	2.4	3.7	4.9	
Escherichia Coli (E. Coli)	Bacterium		3.7	5.5	6.7	7.3	9.7
MERS-CoV	Virus	Vero 81 cells	0.8	1.7	2.5	3.4	4.2
Klebsiella terrigena	Bacterium		3.6	6.4	9.3	12	15
Rotavirus	Virus	Monkey kidney cell line MA 104	7.5	15	25	38	48
Enterococcus faecium Vancomycin-resistant (VRE)	Bacterium		7	9	11	13	15
Pseudomonas aerugi- nosa	Bacterium		3.8	6.5	10	17	
Legionella pneu- mophila	Bacterium		3.0	5.0	7.2	9.3	
Enterobacter cloacae	Bacterium		6.4	12.8	19.2	25.6	

Document name TR002 1.0 CMC UV-C technical validation ICU1

All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any information contained therein, for purposes other than provided for by this document, is not permitted, except with the prior and express written permission of Ryberg B.V.

- $\mathbf{x} =$ fluence in mJ/cm^2
- x1 =lower bound interpolation fluence in mJ/cm^2 , corresponding to y1
- y1 = lower bound log interpolation value
- $x2 = upper bound interpolation fluence in <math>mJ/cm^2$, corresponding to y2
- y2 = upper bound log interpolation value

To summarize, for each performed disinfection, the following findings should be included in the results section:

- 2D disinfection map of the disinfection performed.
- Total time for the disinfection.
- Relevant disinfection settings and parameters. E.g. selected disinfection severity.
- Image of each dosimeter after disinfection.
- A table and/or graph with a summary of the interpreted UV-C fluence per dosimeter.
- Calculated log reduction for the relevant microorganisms.
- ATP measurement results.
- If applicable, the results of the surface culture test.

3 Hypotheses

The expected achievable fluence value for the setting 'C.Diff 2-log', should be in the order of magnitude of $25 mJ/cm^2$. This is worst case for horizontal surfaces. Therefore, the dosimeters should indicate a higher dosage than this, except if there is a full shadow case. The expected corresponding log reduction can then be determined based on this value. Figure 5 shows the expected log reduction values for a variety of microorganisms when using the setting 'C.Diff 2-log' in the webapp of the Omnia robot. These values are based on an emperical data model in combination with the current software disinfection algorithms. It is important to note that the maximum expected or predicted log reduction is limited by literature. The black line represents the limit on most reputable papers with regards to finding a correlation between log reduction and UV-C fluence value. This is therefore taken as the limit on calculating log reduction values. The total disinfection time is expected to be in the order of magnitude of 15 minutes.

The ATP measurements should be negative if the hospital adheres to its own cleaning and disinfection protocols and regulations. Negative means the RLU value of the luminometer should be less than 30.

The surface culture tests should be negative, following the same reasoning as the ATP tests.

4 Results

The results for both the metrics mentioned in the method section will be described below. Two disin-

Expected log reduction value per micro-organism for setting 'C.Diff 2-log'

Figure 5: Expected UV-C fluence in mJ/cm^2 after disinfection.

fections were performed for ICU1, after one another. The setting chosen for both disinfections is 'C.Diff 2log'. The total disinfection time for disinfection 1 was: 11 minutes. Disinfection 2 took in total 13 minutes.

The 2D disinfection report (or map) for disinfection 1 is shown in Figure 6. For disinfection 2, it can be seen in Figure 7.

The dosimeter results after the first disinfection are shown in Figure 8. This figure shows for each of the 14 dosimeters either the color change or fluence value in mJ/cm^2 . The results for the second disinfection, which was performed at maximum an hour after disinfection 1, are presented in Figure 8.

After interpreting the color change for each of the dosimeters, the summary as shown in Table 4 can be constructed. This table shows the fluence value in each of the test locations for both disinfections.

The results from Table 4 can be visualised too, to indicate more intuitive potential correlations. This is done in Figure 10. Note that the maximum UV-C exposure value for the UV-C dosimeters is $100 mJ/cm^2$.

Calculating the log reduction values for each fluence value, results in the estimated reduction per microorganism per test location. Figure 11 shows a 2D radar type figure, with on the radial axis the log reduction value calculated based on available literature, different types of micro-organisms on the discrete perpendicular bisector axes and for a variety of test locations indicated by color and line type. The black line indicates the maximum log reduction value found in literature. The current robot model is not designed with the intentions to go beyond this theoretical limit.

Figure 12 shows the resulting radar graph after two disinfections performed consecutively.

Page

5 of 12

The results of the ATP measurements before disin-

Document name

TR002 1.0 CMC UV-C technical validation ICU1

All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any information contained therein, for purposes other than provided for by this document, is not permitted, except with the prior and express written permission of Ryberg B.V.

Figure 6: 2D disinfection map indicating log reduction values after disinfection 1 for the selected micro-organisms.

Figure 7: 2D disinfection map indicating log reduction values after disinfection 1 for the selected microorganisms.

Title CMC UV-C technical validation ICU1 Version 1.0

(a) T1S1: sink crane vertical.

(f) T1S6: blood cuff

horizontal

(b) T1S2: bed center horizontal.

(g) T1S7: inside (h) T1S8: be closet handle vertical. curtains vertical.

8: behind (vertical. 4

(c) T1S3 bed handle

inside vertical.

(d) T1S4: under the bed vertical.

(i) T1S9: respirator 45 degrees angle.

(e) T1S5: dialysis machine vertical.

(j) T1S10: in front of curtains vertical.

(k) T1S11: wall corner near ceiling vertical.

(l) T1S12: stand / moving cabinet vertical.

(m) T1D1: table top stand / moving cabinet vertical.

(n) T1D2: table top bedside corner vertical.

Figure 8: UV-C sticker dosimeters post-disinfection 1.

Title CMC UV-C technical validation ICU1 Version 1.0

(a) T1S1: sink crane vertical.

(f) T1S6: blood cuff (g) T1S7: horizontal

(b) T1S2: bed center horizontal.

inside closet handle vertical.

(c) T1S3 bed handle inside vertical.

(h) T1S8: behind curtains vertical.

(d) T1S4: under the bed vertical.

(i) T1S9: respirator 45 degrees angle.

(e) T1S5: dialysis machine vertical.

(j) T1S10: in front of curtains vertical.

(k) T1S11: wall corner near ceiling vertical.

(l) T1S12: stand / moving cabinet vertical.

(m) T1D1: table top stand / moving cabinet vertical.

(n) T1D2: table top bedside corner vertical.

Figure 9: UV-C sticker dosimeters post-disinfection 2.

Fluence 2 (mJ/cm^2)

>100

50

55

50

25

45

>100

15

>100

>100

MFRS-CoV*

MRSA*

S.aureus*

E.coli*

Legionella...

---• T1S5

----• T1S8

(lebsiella terrigena*

Direction of

disinfection

difficulty**

T1S11	40	90	T1S6		• T1S8	
T1S12	40	05				
11512	40	90			- · • · - T1D2	
TIDI	89	101	Figure 11. Ca	laulated log red	uction values based	on
T1D2	105	>199	available literat	turo	uction values based	on
			- available mera	bure.		

Figure 10: UV-C fluence in mJ/cm^2 after disinfection for a variety of test locations.

Figure 12: Calculated log reduction values based on available literature.

Document name Page TR002 1.0 CMC UV-C technical validation ICU1 9 of 12 All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any information contained therein, for purposes other than provided for by this document, is not permitted, except with the prior and express written permission of Ryberg B.V.

Fluence 1 (mJ/cm^2)

70

25

25

25

20

25

100

10

65

100

Ryberg

ID

T1S1

T1S2

T1S3

T1S4

T1S5

T1S6

T1S7

T1S8

T1S9

T1S10

Table 3: Fluence per UV-C sticker dosimeter after one- Log reduction value per micro-organism per location after 1 disinfection

Sars-cov-2*

5

C Diff

VRE

Rotavirus

Pseudomonas

Max literature value — T1S1

Norovirus

Enterobacter cloacae*

T1S3

- T1S6

fection, after disinfection 1 and after disinfection 2, are listed in Table 4. A visual representation is also shown in Figure 13.

Table 4: ATP measurement before-, after one- and after two disinfections.

				r
ID	ATP 1 (RLU)	ATP 2 (RLU)	ATP 3 (RLU	IJ)
T1S1	6	4	-	(
T1S2	3	3	5	
T1S3	62	19	2	e
T1S6	26	40	12	C
				_

Figure 13: ATP tests performed before and after disinfection.

The surface culture tests, which were performed after the first disinfection, came back negative. Meaning, the microbial count present on the surfaces was accepted by the hospital.

5 Discussion

The low sample size of n = 1 for the disinfections performed can result in a large uncertainty of the results.

Also, since a visual inspection is used to determine the fluence values, there is some interpretation of the exact amount of fluence. The amount of subjectivity differs per test, but this should be reflected in the resulting standard deviation of the test in question.

The resolution of the UV-C stickers is $\pm 6mJ/cm^2$ for the quick reference cards and $\pm 13mJ/cm^2$ for the UV-C dots stickers, this should be taken into account as well.

Even though the Quick Reference dosimeters use the same color scale as the Dots variant, the manufacturer does not recommend to use the color card from the UV-C Dots. This however was done for these tests, as from experience, the color change and dosage do match.

Title CMC UV-C technical validation ICU1 Version 1.0

A limitation of using the sticker UV-C dosimeters, is that the influence of surface roughness is not taken into account. Soft or more porous surfaces are harder to disinfect than hard non-porous materials. This could be reflected in the achievable log reduction values.

From empirical knowledge, there is a discrepancy noticeable between the digital- and sticker dosimeters, as the stickers consistently showed a lower UV-C fluence value with respect to the digital dosimeters. The sticker manufacturer Intellego claims their stickers are "Validated by RISE: Research Institute of Sweden"⁴. The digital dosimeter manufacturer, UVCense, stated their devices are calibrated and have an accuracy of " $\pm 4\% \pm 1mJ/cm^2$ (NIST-traceable calibration meter)"⁵.

It should also be noted that the achieved disinfection severity was optimized for speed. The Omnia UV-C disinfection robot can disinfect more thorough than reflected in this study, if severity is given more priority over speed.

According to the auto-generated reports shown earlier, the first disinfection was insufficient and the second one was completed for a 2-log reduction of C.Diff. This is the estimated UV-C dosage using the current software algorithms. It could be that the robot was standing still for some time in disinfection 1 (yellow spot in left hand side of the map). Also, since there was a lot of equipment in the room, the area behind the objects was difficult to reach (seen in the top part of the the maps).

The study was limited due to lack of available literature on UV-C fluence levels of certain relevant micro-organisms. Also the lack of data on higher logreduction UV-C fluence levels was noticeable. In general, research papers only went to a 4-log or 5-log reduction at maximum. One example which is reflected heaviliy in the results, was the disinfection severity for C.Diff, as data only up to a 2-log reduction was available at the time.

The ICU1 room at CMC was last cleaned 2 days ago and they had a patient in the room prior to cleaning. Touching surfaces or even human presence in the room could have an influence on the ATP and surface culture test results.

The influence of shadows on the test locations can be predicted quite accurately before starting the disinfection. This is shown in Figure 14, where the test sample locations were grouped according to the method explained earlier. The graph shows a linear relation between four categories of exposure values. This relation holds true for both disinfections. Also from figures 11 and 12 is can be concluded that there were some shadow areas present, based on the fluence value

Document name

TR002 1.0 CMC UV-C technical validation ICU1

All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any information contained therein, for purposes other than provided for by this document, is not permitted, except with the prior and express written permission of Ryberg B.V.

⁴https://uvcdosimeters.com/uvc-254-dots/

 $^{^{5}\}rm https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/2580/UVD200BLE%20Datasheet.pdf$

[|] **Page** | 10 of 12

Title CMC UV-C technical validation ICU1 Version 1.0

Figure 14: UV-C fluence in relation to sample location expected exposure.

per dosimeter. However, this sometimes was also reflected on the dosimeters itself as a color gradient (e.g. T1S5). After attending a manual (chemical) cleaning and disinfection routine of a patient room at CMC, it became apparent that every piece of furniture or equipment is moved or was flipped upside down. This principle could also be applied in the UV-C disinfection routine. For example, two UV-C disinfections could be performed (same as was done now), where the furniture or equipment is moved/rotated slightly before the 2nd disinfection. The previous shadow areas can then be counteracted. And since this is already done in the daily routine, it should not disrupt the workflow of personnel.

The influence of test surface orientation can be investigated too. Two classifications were made: vertical and horizontal and/or angled orientation of the dosimeters. Figure 15 indicates that the vertical surfaces get more exposure than horizontal and/or angled surfaces, although too little data is used to indicate any statistical significance. In the current robot software state, worst-case horizontal surfaces are always assumed even if in reality the test surface is vertical. This is due to the 2D map used for estimating log reduction. It is recommended to take this into account in newer software models, such that a (partial) 3D can be created.

According to literature, an ATP measurment does not prove to be the best choice for measuring UV disinfection severity. Since the cell's internal DNA is damaged, preventing the micro-organism from replicating, instead of damaging its cell wall which is the case with chemical disinfectants, the amount of ATP is not reduced significantly immediately after disinfection. This was also supported by the findings in our ATP tests, although on average there was a reduction visible, but the statistical significance remains questionable⁶. If

Figure 15: UV-C fluence in relation to sample location orientation.

the cell dies immediately, there can be a small reduction, but there may be a larger reduction in ATP values a couple hours after disinfection, up to 24 hours according to some studies, after the cells die⁷.

An observation relating the use of Clinell Universal Wipes 8 for cleaning and disinfection at CMC and the relative effectiveness against the Corona virus could be made. The effectiveness of Clinell wipes was found to be a 4-log (i.e. 99.99%) reduction against both SARS-CoV-2⁹ and MERS-CoV¹⁰. For these two viruses, the log reduction observed across all sample locations throughout the intensive care unit (ICU1), was a 4.5- \log and >5-log reduction respectively.

The target disinfection time of 15 minutes for ICU1 was achieved: 11 and 13 minutes of disinfection time resulting in an average duration of 12 minutes.

The intentions for CMC were to use the Omnia UV-C disinfection robot for terminal disinfection. The device will be an addition to the current disinfection protocol. As a comparison, manual cleaning and disinfection of ICU1 takes two trained people of housekeeping one hour. If additionally, terminal fogging is applied, this takes 10 minutes to set up and about 2 hours of fog-

⁶https://www.researchgate.net/publica-

TR002 1.0 CMC UV-C technical validation ICU1

Page 11 of 12

tion/318458346 Mechanisms of ultraviolet disinfec-

 $tion_and_chlorination_of_Escherichia_coli_Culturabil$ ity_membrane_permeability_metabolism_and_genetic_damage

 $^{^{7}} https://www.gl-biocontrol.com/en/how-to-assess-the-assess-t$ efficacy-of-uv-disinfection-using-atp-testing

 $^{^{8}}$ https://gamahealthcare.com/products/universal-wipes-200/

⁹https://gama.getbynder.com/m/394cae9c796e6464 ¹⁰https://gama.getbynder.com/m/626f1fe9d80dc1f8

Document name

6

ging, evaporating and ventilating afterwards. In comparison, the current Ryberg UV-C disinfection adds only 12 minutes to this.

As an acknowledgment, this proof of concept study was performed by Ryberg in close collaboration with CMC. The results were interpreted and reported by engineers from Ryberg and medical staff from CMC.

At last a couple of recommendations for follow up studies which could be performed. First of all, it would be interesting to compare a static UV-C device to an autonomous moving UV-C robot. Total disinfection time, usability as well as disinfection severity taking into account shadow forming should be part of this study. Also, the repeatability of the disinfection should be identified. Since the robot is not moving with a predetermined path, the starting location is different and the objects may have moved slightly, it would be interesting to investigate the disinfection coverage for varying parameters. At last, it is imperative to do a validation study with micro-organisms with the help of a medical (research) lab. The disinfection routine, workflow and environment (i.e. the use-case) should reflect the robot being used by hospital personnel in a hospital environment.

Conclusion

The proof of concept performed at Clemanceau Medical Center (CMC) in Dubai, showed that the usage of the Omnia UV-C disinfection robot has the potential to provide an additional means of infection prevention. The technical validation with digital- and sticker-type UV-C dosimeters, ATP measurements and surface culture test, indicated the achievable log reduction values for a variety of test locations in the intensive care unit (ICU).

The total disinfection time for ICU1 was 12 minutes on average and the target UV-C dosage of 25 mj/cm^2 on horizontal surfaces was achieved on 86% of sample locations. The results are based on and supported by scientific literature.

Furthermore, the usability of the Omnia UV-C disinfection robot in the CMC environment was investigated and the potential of implementation in the existing cleaning and disinfection standards and protocols was explored. Demonstrations and training sessions among hospital staff was performed as well.